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Abstract

The present work reviews the results concerning quantum scattering theory of ultrarelativistic electrons in ultrathin crystals and its
comparison with analogous classical results. It deals with an intermediate range of thicknesses, large enough for that the particle
motion could not be considered as rectilinear but small enough for that the channeling regime of motion was not established. The
quantum theory is based both upon the representation of the scattering amplitude as an integral over the surface surrounding the
target, and on the so-called operator method of determination of the wave function as a solution of a Schro..dinger-like equation.
The latter method implies a wide use of the Fourier technique, both in calculation of each next step in the wave packet evolution,
and in moving from the spatial coordinates to the angular ones. The authors compare the quantum differential scattering cross-sec-
tions with the classical ones in the considered range of crystal thicknesses and show their resemblances, distinctions and the evo-
lution of these distinctions with the change of the particle energy. The simplest variant of quantum scattering theory based upon
the eikonal approximation of quantum mechanics is considered. In the paper the quantum differential scattering cross-section was
calculated and its affinity with the classical one was demonstrated. In the preparation of these lecture notes the material of the paper
[4] was used.
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1. Introduction

When fast charged particles pass through crystals
the phenomenon of channeling is possible, at which
the particles move inside the channels formed by
crystal atomic strings or atomic planes, being period-
ically deviated to small angles from the channel
direction [1, 2]. In ultrathin crystals there is no room
for channeling phenomenon to develop (see Fig. 1).

However, there remains the possibility of appearance
of several coherence and interference effects at the
interaction of particles with crystal atoms (see [2, 3]
and references therein).

The work presents some results of classical and
quantum theories of high energy charged particles
scattering in transitional range of crystal thicknesses,
from those thicknesses at which the channeling phe-
nomenon is not developed up to those at which this
regime of motion is established [4–6]. Quantum the-
ory is based upon special representation of the scat-
tering amplitude [7] in the form of an integral over
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the surface surrounding the region of influence of the
external crystal field onto the particle (in the consid-
ered problem this corresponds to the field of the
entire crystal), and upon the development of numer-
ic methods of calculating of the wave function inside
the crystal, that is done by using the so-called spec-
tral method of solving wave equations [8–10]. The
classical theory is based upon the solution of the par-
ticle motion equation by numerical methods [11].
The main attention is paid to the comparative analy-
sis of quantum and classical characteristics of the
scattering process at different crystal thicknesses and
particle energies.

Fig. 1. Scattering in absence of channeling (a) 
and in the channeling regime (b)

2. Quantum scattering theory 
of ultrarelativistic electrons in external field

Let us consider the scattering of relativistic elec-
trons incident onto a thin crystal along one of its
crystal axes. The differential scattering cross-section
and the scattering amplitude in this case are defined
by the following formulas [2]:

(A.1)

(A.2)

where ϑϑ is the scattering angle; ψ(r) – the wave func-
tion of the electron passing through the crystal, u'– and
p' – bispinor and momentum of the scattered electron
respectively, and U(r) – the potential energy of the
interaction of the electron with the crystal lattice
field (the system of units in which the light velocity
is equal to one, c=1, is used). The integration in (A.2)
is performed inside the volume V where the particle
is subject to the external field action.

At the incidence of fast particles onto the crystal
along one of its axes (named z axis) the correlations
between consequent collisions of the particle with
lattice atoms are substantial. As a result of these cor-
relations, the particle motion is mainly determined by

the continuous potential of crystal atomic strings sit-
uated parallel to the z axis, so the lattice potential
averaged along this axis is [1, 2]:

(A.3)

where L is the crystal thickness and ρρ – the coordi-
nates (x,y) in the plane orthogonal to the z axis (out-
side the crystal Uc(ρρ)=0).

By using the Dirac equation for the wave function
of the electron in the field U(r):

(A.4)
the scattering amplitude (A.2) is as follows

(A.5)

The scattering amplitude in this case, with the use
of the Gauss theorem, can be presented in the form of
the integral over a closed surface surrounding the
external field region [7]:

(A.6)

where dS is an element of the surface surrounding
the crystal.

It is essential that the surface integral in (A.6)
does not depend on the surface form, so as the only
requirement imposed on this surface is that it sur-
rounds the entire area of the external field action. In
the considered problem it is convenient to choose as
such a closed surface a cylinder whose bases coin-
cide with crystal sides. By neglecting the contribu-
tion of the cylinder lateral side parallel to the z axis
in the surface integral (A.6), the expression for the
scattering amplitude is as follows:

(A.7)

For determining the wave function of the electron
in the field Uc(ρρ) the squared Dirac equation [2] is
used:

(A.8)

where m and ε are particle mass and energy respec-
tively, and αα=γ0γγ.

Before entering into the crystal, the electron wave
function is represented as a plane wave characterized
by momentum p and bispinor up. Then, by detaching
from ψ(r) the bispinor up and the plane wave factor 

(defined ), the equation for ϕ(r) is
as follows:
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(A.9)

where v=p/ε is the velocity of the electron and
p̂=–i∇ – operator of momentum.

3. Eikonal approximation 
in quantum scattering theory

On the basis of the above formulas it is possible to
study the scattering of fast charged particles in the
fields with a complicated configuration, such as the
field in the crystal. In this case the development of
approximated methods is crucial as that enables to
calculate the wave function avoiding the use of spe-
cific form of the potential of the particle interaction
with the external field, just as the development of
numeric methods of calculation of the wave function.

One of the simplest methods to perform the calcu-
lations of the wave function and the scattering ampli-
tude at small angles of fast charged particles in the
external field is the one based upon the eikonal
approximation of quantum electrodynamics. Let us
give some results that can be obtained for the scatter-
ing cross-section based upon this method.

In the eikonal approximation of quantum electro-
dynamics the solution of the equation (A.9) is as fol-
lows [2]:

(A.10)

where By substituting

this solution into (A.5), it is found that

(A.11)

where u' is the scattered electron’s bispinor, q=p–p'
is the momentum transmitted to the external field, and

(A.12)

It should be noted that in deduction of the formula
(A.10) the terms proportional to ε–1 were dropped [2].
With the same precision as in (A.11), the term
qzL≈q⊥

2/ε in the exponent index was also dropped. So,
the formula (A.11) is true for the scattering of particles
at small angles. Moreover, for such angles u'–γzup≈2p
and then, in this range of scattering angles spin effects
in scattering can also be neglected. Hence, the scatter-
ing amplitude takes the following form:

(A.13)

If the condition |χ(ρρ)|<< is fulfilled, the expo-
nential factor in (A.13) can be expanded in series
about χ/. In the first approximation to this parame-
ter, the scattering amplitude transforms into the cor-
responding result of the first Born approximation,

(A.14)

where ξq– is the Fourier component of ξρ.
At arbitrary values of the parameter χ/ the scat-

tering cross-section to a non-zero angle can be pre-
sented, according to (A.1) and (A.13), as follows:

(A.15)

In the quasiclassical approximation, when
|χ(ρ)|>>, the calculation of integrals entering into
(A.13) can be carried out on the basis of the station-
ary phase method (see, e. g., [2]). In this case, if the
main contribution in the scattering cross-section
(A.15) is made by the values of ρρ lying in the vicin-
ity of ρρ', the formula (A.15) transforms into the cor-
responding result of the classical scattering theory. In
fact, in this case the expansion about ρρ–ρρ' can be per-
formed in the phase part of the exponent,
[χ(ρρ)–χ(ρρ')]. In the first approximation of such
expansion it is found that

(A.16)

where Δ=ρρ–ρρ' and, consequently,

(A.17)

where In passing in (A.17)

from the integration over q⊥(ρρ') to the integration
over ρρ', the classical scattering cross-section is
obtained

(A.18)

where |∂q⊥(ρρ')/∂ρρ'| is the transition determinant from
q⊥(ρρ') to ρρ'. The value q⊥(ρρ')=q⊥ is the deflection
function of fast charged particle in non-symmetric
field for scattering at small angles.

4. Operator method in the scattering theory

Characteristic values for the scattering angles of
high energy electrons in the thin crystal are small. In
this case, by resolving the Eq. (A.9), spin effects in
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scattering (spin-field interaction) can be neglected,
so far as the terms proportional to U2/2ε and p̂z

2/2ε.
As a result, the equation for ϕ(r) is as follows:

(A.19)

where

The equation (A.19) is a Schro..dinger-like equa-
tion, where the particle mass is replaced by the ener-
gy and z/v is used instead of time, so it can be solved
with the help of numerical method developed in [8].
Relying on the analogy of equation (A.19) with the
Schr`dinger equation, the evolution of the wave
function with depth δz of particle’s penetration into
the crystal is expressed, according to (A.19), in the
following operator form:

(A.20)

This expression is formally exact for any δz, but
its direct application leads to mathematical difficul-
ties connected with the fact that the exponent index
in (A.20) is composed of two non-commuting terms.

However, applying the operator technique [12] at
small values of δz makes it possible to rewrite (A.20)
in approximated form in which the commutators of
the order higher than [Â ,B̂] are neglected, where 

Hence, with the precision up to the terms propor-
tional to δz3, such Zassenhaus product formula is
true:

(A.21)

By dividing the full crystal thickness L into a large
number of small intervals δz, so as for each of them
(A.21) is accomplished, (A.19) for a given L is
solved by the way of iteration procedure.

By using the solution for ϕ(ρρ,z) obtained in such a
manner at z=L, the scattering cross-section and the
scattering amplitude can be written in the form:

(A.22)

(A.23)

where q⊥=pϑϑ is the transversal component of the
momentum transmitted to the crystal and ϑϑ=(ϑx,ϑy)
is the scattering angle (ϑ<<1). Here the fact that at
small scattering angles u'–γzup≈2pz≈2p was used.

It is worth mentioning that if in the exponent
(A.21) the terms containing the operator Â are neg-
lected, the wave function (A.20) and the scattering
amplitude (A.23) in the eikonal approximation of
quantum scattering theory will be obtained. At suffi-
ciently large energies of the electron (ε→∞) this con-
dition can always be accomplished. Taking this into
account leads to the need for numerical methods to
calculate both the wave function and the scattering
cross-section. At this procedure, the calculation of
action of the differential operator p̂⊥2 in the exponent
(A.20) is performed by means of Fourier technique.

5. Classical theory

Now let us consider the fast electrons scattering in
the thin crystal on the basis of classical mechanics.
The particle motion in this case is determined by its
classical trajectory that is the solution of classical
equations of motion and satisfies to the given initial
conditions.

The differential scattering cross-section in classical
mechanics corresponds to the elementary surface in
the impact parameter space, from which the particle is
scattered into the elementary solid angle do≈d2ϑ:

(A.24)
For calculating this cross-section it is necessary to

find the deflection function of the particle in the
external field ϑϑ=ϑϑ(b), that is the dependence of the
particle scattering angle ϑϑ=(ϑx,ϑy) on the impact
parameter b=(bx,by), and then to perform the inver-
sion of this function, i.e. to define the dependence
b=b(ϑϑ) (see, e. g. [2, 13]). In the complex field, e. g.
inside the crystal, the deflection function ϑϑ=ϑϑ(b) is
quite a complex function of the coordinates bx and by.
It is important that the deflection function inversion
is not single-valued in the common case. Taking into
account this ambiguity, the classical scattering cross-
section (A.24) can be presented in the following
form:

(A.25)

where |∂ϑϑ/∂b|=|∂(ϑx,ϑy)/∂(bx,by)| is the determinant
of transition from the variables ϑx=ϑx(bx,by) and
ϑy=ϑy(bx,by) to bx and by, with the subsequent inver-
sion of the deflection function. The summation in
(A.25) runs over n single-valued branches of the
deflection function.

The formula (A.25) for the scattering cross-sec-
tion can also be written in the form:

(A.26)

It should be pointed out that this expression for
the classical scattering cross-section can be easily
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obtained from the quantum one (A.22) in the frames
of the quasi-classical approximation of quantum
mechanics, in the case of a single-valued correspon-
dence between the particle’s scattering angle and its
impact parameter.

In the common case the deflection function can be
expressed via classical particle trajectories after their
exit from the external field region (in the given case
from the crystal). At small scattering angles this
dependence is defined by the relation

(A.27)

where v⊥(b,L) is the transversal component of the
particle velocity at z=L. The velocity v⊥(b,z) is
defined as the solution of the classical equation of
motion. At the particle motion in the continuous
strings potential (A.3), this equation, with the preci-
sion up to the terms of the order of (v⊥2/v2), has the
following form [1, 2]:

(A.28)

Its solution can be found on the basis of numeri-
cal methods (see, e. g., [11]) for a large number of
particles incident onto the crystal at different values
of impact parameters. This enables to develop the
procedure of numerical calculation of the scattering
cross-section for a particle beam falling onto the
crystal with random uniformly distributed impact
parameters. In this case, the probability of the parti-
cles scattering into the solid angle interval (ϑϑ,ϑϑ+dϑϑ)
is determined by the relation of particle number
dN(ϑϑ) that exited into this interval, to the full number
of incident particles N. The scattering cross-section is
connected with dN by the relation

(A.29)

where S is the transverse size of the crystal surface
which interacts with the beam.

6. Comparative analysis of quantum 
and classical effects in scattering

On the basis of the above-stated methods, it is
possible to carry out numerical calculations of quan-
tum and classical elastic scattering cross-sections of
relativistic charged particles in thin crystals, and per-
form comparative analysis of quantum and classical
effects in scattering. The paper presents some results
of calculations for relativistic electrons with different
energies in ultrathin Si crystals that are oriented by
their 〈100〉 axis to the incident beam. The continuous
potential of the whole ensemble of atomic strings
represents quite a complicated two-dimensional peri-
odical function of the coordinates (x,y) in the plane

orthogonal to the z axis (see Fig. 6.16 in [2]). The
calculation of quantum and classical scattering cross-
sections in such a field can only be performed on the
basis of numerical methods.

In quantum calculations, a wide wave packet cov-
ering a large number of crystal atomic strings whose
axes are periodically situated in the transverse plane
was used as the initial state ϕ(ρρ,z=0).

The calculations based upon the classical theory
were performed for 107 particles incident onto the
crystal with the impact parameters randomly distrib-
uted over the elementary cell in its transverse plane.

Fig. 2 shows the results of calculations of quan-
tum and classical scattering cross-sections for ultra-
relativistic electrons in Si crystals in the transitional
thickness range, at which the channeling phenome-
non is not developed or is in the process of develop-
ment.

Unlike classical scattering cross-section, the
quantum one, as proved by calculations, contains
sharp peaks at some values of scattering angles.
These peaks are caused by the interference effect at
the wide wave packet (plane wave) scattering on
crystal atomic strings that are periodically situated
inside the crystal. Due to this interference, the trans-
mitted momentum values at particle scattering on the
crystal take the values proportional to the whole
number of inverse lattice vectors g. Here it is essen-
tial that the positions of peaks in angular distribu-
tions of particles depend on the character of distribu-
tion of atomic strings in the transverse plane. In this
regard, it is assumed that the analysis of angular dis-
tributions of particles scattered on the thin crystal is
analogical to the X-Ray analysis of the crystal struc-
ture, but with such a difference that in the given case
the authors deal not with single crystal atoms but
with atomic strings as elementary scattering objects.

As the full particle energy increases, the distance
between interference maxima decreases, and the
quantum scattering picture approaches to the classi-
cal one.

It should be noted that the quantum formulas for
the scattering cross-section (A.1), (A.2) are true for
macroscopic distances between the target and the
detectors (r→∞). The value L entering in the formu-
la (A.7) determines, in its turn, not the distance
between the target and the detector but the size of the
area in which the interaction of particles with the
external field takes place. There is, however, a num-
ber of factors that can influence the thin structure of
angular distributions of scattered particles in the
experiment, such as the angular divergence of the
incident beam and the finite linear width of the beam.
In particular, for the results obtained in the work to
be detectable, it is required that the detection of scat-
tered particles was performed in the distance
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D>>b/Δϑ from the target, where b is the beam trans-
versal size and Δϑ is the required angular resolution.
The influence of these and similar factors onto the
scattering characteristics is, however, not analyzed in
the present paper.

It is noteworthy that in the range of thicknesses
under study the quantum levels of transverse motion
are still not developed (for that these levels were
formed, it is necessary that the particle performs at
least several oscillations inside the channel). At the
same time, in this thickness range there is a substan-
tial rearrangement of the wave packet (plane wave)
falling onto the crystal, which is connected with the
periodicity of the atomic strings positions. Due to
this rearrangement, the formation of interference
peaks in angular distributions of scattered particles is

realized. It is also necessary to pay attention to the
fact that with the target thickness increase the relative
values of the scattering cross-section in these peaks
change themselves. There is some periodicity in
these intensity changes, so as their period is of the
order of the length l~a/ψc along the z axis, that sub-
stantially exceeds the distance a between the string
atoms. This, in its turn, must result in an oscillatory
dependence of electron radiation characteristics in
crystal, and, moreover, such an effect is possible for
single electrons. The detailed analysis of these
effects, however, exceeds the frames of the present
work.

Notably, the structure of the obtained quantum
angular distributions of scattered particles is analog-
ical to the structure of angular distributions of parti-
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Fig. 2. Simulation of quantum (left) and classical (right) scattering pictures of electrons in 1000 C Si 〈100〉 crystal. 
Kinetic energies of particles are 5 MeV (above) and 500 MeV (below), from top to bottom. 

The captions at x and y axes express scattering angles in mrad, color scale expresses the value in mrad–2
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cles obtained from the electron microscopy (see, e. g.
[14, 15]). The considered problem, however, deals
with the particles whose energies substantially
exceed those of the particles used in the electron
microscopy. Moreover, in the electron microscopy
the analysis of the process of particle scattering is
performed on the basis of two- and many-wave for-
malism. In the present work such an analysis is per-
formed on the basis of spectral method of direct
numeric calculation of the wave function and the
scattering amplitude. This provides new possibilities
in the description of physical processes at the inter-
action of high energy particles with crystals, such as

the analysis of transition from the quantum picture of
scattering of charged particles in the crystal to the
classical one, the rainbow scattering phenomenon,
radiation in the transitional region of crystal thick-
ness at which the channeling regime is still not
formed, etc. This method can also be applied to the
problems connected with the electron microscopy.
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