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Abstract  

Supercapacitors (SCs) are used extensively in high-power potential energy applications like renewable energy systems, electric 

vehicles, power electronics, and many other industrial applications. This is due to SCs containing high-power density and the abil-

ity to respond spontaneously with fast charging and discharging demands. Advancements in material and fabrication techniques 

have induced a scope for research to improve the application of SCs. Many researchers have studied various SC properties and 

their effects on energy storage and management performance. In this paper, various fractional calculus-based SC models are sum-

marized, with emphasis on analytical studies from derived classical SC models. Study prevails such parameterized resistor–
capacitor networks have simplified the representation of electrical behavior of SCs to deal with the complicated internal structure. 

Fractional calculus has been used to develop SC models with the aim of understanding their complicated structure. Finally, the 
properties of different SC models utilized by various researchers to understand the behavior of SCs are listed using an equivalent 

circuit. 
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1. Introduction 

A supercapacitor (SC), also known as an ultraca-

pacitor or electric double-layer capacitor (EDLC), is a 

type of energy storage component that has a large ca-

pacitance with quick charge and discharge times [1]. 

SCs store energy in the form of electrical energy 

through the use of ions [2]. This is in contrast to bat-

teries and conventional capacitors; however, SCs are 

a combination of both [3]. The structure of SCs is 

similar to that of a battery, which uses an electrolyte 

solution and electrodes, but the method of storing en-

ergy is similar to conventional capacitors, which use 

electrostatic force. Moreover, the mechanism of stor-

ing energy is through the use of ions in an electrolyte 

solution but without any chemical reaction taking 

place at the electrode. The electrodes are polarized, 

and charge accumulation in an electrolyte double lay-

er is used to store the energy electrostatically in an SC 

[4]. SCs utilize a higher surface area, which is greatly 

attributed to the porous-like structure of electrodes 

and thinner dielectrics to achieve greater capacitance. 

Because of this, SCs have greater power densities, 

typically 10 times that of a battery and 100 times 

greater than most conventional capacitors [4]. Lon-

gevity, in terms of the life cycle, is another key bene-

fit of SCs over batteries, but the longevity of SCs is 

less than conventional capacitors; hence, SC bridges 

the gap between the two [4–6]. 

In the past decade, significant developments in 

SC technology have increased its applications in 

terms of energy storage and power delivery aspects. 

SCs fulfill a key role as an energy storage device 

where there is need to store or supply short energy 

pulses for a short duration. Such storage and supply 

applications include electric hybrid cars [7] (e.g.,  
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regenerative braking), renewable energy systems 

[8, 9], biomedical sensors [8], and other electronic 

products. Large-scale SCs are used as power quality 

regulators in electrical grids as well [9]. 

It is normal practice to model the dynamics of a 

system in order to understand the system and design 

better control systems. Calculus is commonly used 

to mathematically model systems and mainly derives 

integer-order transfer functions. However, there are 

phenomena for which ordinary integer-based calcu-

lus does not satisfy the requirements of modeling the 

characteristics. Recent studies have suggested that 

SCs are an example of such a system and seem to 

exhibit fractional-order calculus-based characteris-

tics [10–13]. Modeling of these systems requires the 

use of more sophisticated techniques from which 

one can extrapolate their actual behavior for control 

and management purposes. 

In this paper, a brief survey is conducted on SC 

models with special emphasis on the use of frac-

tional calculus theory. This paper aims to summa-

rize the recent representation of fractional-order 

models to capture the behavior of SCs and to un-

lock more opportunities in system identification 

and control. 

 

2. SC structure and electrochemical behavior 

In 1853, Helmholtz first discovered the double-

layer phenomenon, which scientists went on to 

study to store electrical charges [14, 15]. These 

studies led to a patent filing in 1957 by Becker 

from General Electric Company for a low-voltage 

SC [16]. Since then, three different types of SC 

were invented that differ in terms of charge storage: 

the EDLC, the pseudocapacitor (PC), and the hy-

brid capacitor (HC) [17]. Fig. 1 shows the layout of 

these SCs. EDLCs are based on a non-faradaic pro-

cess and do not involve the breakage or formation 

of any chemical bonds. PCs are based on a faradaic 

redox reaction process and the transfer of charges 

between the electrode and electrolyte [18–20]. HCs, 

as the name implies, are a combination of both 

EDLCs and the PCs [17]. 

 

 
Fig. 1. Supercapacitor family 

The structure of an SC consists of electrodes 

and an electrolyte solution [21, 22]. The electrodes 

have a porous-like structure that enables the elec-

trolyte solution to have contact with a higher sur-

face area, giving it a higher capacity to hold 

charges than regular capacitors. Unlike batteries, 

there is no contact between the electrodes and the 

electrolyte solution, omitting any chemical reac-

tion [4]. A membrane separator is used to avoid 

any electrical short circuit between the two elec-

trodes [23]. The structure of an SC is shown in 

Fig. 2. 
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SCs operate similar to a normal capacitor because 

there is separation between the electrodes and the 

electrolyte solution. The charge arrangement is the 

only process that takes place during the charge or 

discharge phase of the capacitor. The separation of 

the electrode and electrolyte causes the charge to be 

stored through electrostatic forces. This causes a 

charge to build up a double layer around the object, 

giving rise to the term EDLC [21, 4]. More specifi-

cally, it can be treated as a series of two connected 

capacitors. The two capacitors consist of the capaci-

tance of the stern layer and the capacitance of the 

diffusion layer. The former arises from the electro-

static charge attraction at the surface, and the latter 

is the capacitance formed by the free ions in the 

electrolyte that move about freely due to the thermal 

and electrostatic attraction [23–27]. Because of this, 

double-layer formation and relaxation occur more 

quickly when a voltage difference is applied. The 

voltage rating of the SC is mostly dependent on the 

decomposition of the electrolyte solution. Other fac-

tors contributing to the working voltage of the ca-

pacitor are the operating temperature, current densi-

ty, and required life cycle [4, 28]. 
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Fig. 2. Supercapacitor internal structure 

 

3. SC fractional-order modeling 

To capture the nonlinear dynamics of a physical 

SC, fractional-order modeling is preferred and has 

evolved over the past decade. Fractional-order models 

reflect the actual behavior better than integer-based 

models. To demonstrate this, Fig. 3 shows the ideal 

cyclic voltammetry behavior of ideal, resistive, and 

physical capacitors. Because of the more complicated 

structure of SCs and use of ion movements (diffusion) 

to store energy, its description requires a more compli-

cated method. Moreover, this type of diffusion, as well 

as suspension-like granular substances in disordered 

solids, can only be factored using fractional-order 

equations. Researchers have shown how fractional-

order models can demonstrate this behavior using 

charging/discharging of a capacitor with various types 

of input conditions. Considering the importance of this 

subject, this paper will first look at the different types 

of analytical models that exist to date that have been 

created on the basis of fractional calculus. 
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Fig. 3. Ideal cyclic voltammetry behavior of capacitors 

 
3.1. Simple resistor–capacitor model  

A simple resistor–capacitor (RC) model based on 

the behavior of a porous electrode model has been ex-

plored in [29–31] and is shown in Fig. 4. This model 

employs a parameterized RC network to imitate the 

electrical properties of SCs. It compromises a series 

resistor,   , and a constant phase element (CPE) that is 

mostly a fractional capacitor with a real order,  , that 

ranges from 0 to 1. The impedance of CPE can be 

written as               in Laplacian form (or in 

the s-domain). In [29], a charging circuit with a step 

voltage input was developed, as illustrated in Fig. 4. 

The total impedance,        , expression for such a 

porous model as Fig. 4 can be written simply as 

1

1
( )SC sZ s R

Cs
 

  

(1)
 

The transfer function for this charging circuit 

with initial zero conditions can be given by 

1
( ) ( )

( )
( )

1

( )

s
in in

s s
o

s

R
V s V s s

C R R R R
V s

s
C R R






 





  

(2)
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given that the two-parameter Mittag–Leffler func-

tion is defined by 

,

0

( )
( )

k

k

x
E x

k
   






  , (3) 

where the gamma function     is defined as 

1

0
( ) ,t x
x e t dt x R

      . (4) 

The time domain translation of equation (2) in 

terms of equation (3) for a step response of input 

voltage amplitude (   ) is 

, 1

,1

( ) ( )
( )

( )

s s

o cc

s

s s

t t
E

C R R C R R
v t V

R t
E

R R C R R

 

 







  
               

.  (5) 

 
Fig. 5. Effect of α on model responses 

A MATLAB simulation of equation (5) is illus-

trated in Fig. 5. The simulation was conducted for α, 

ranging from 0.1 to 1 at an interval of 0.1. The data 

were simulated for   = 2 F,    = 25 Ω,   = 200 Ω, 

and     = 5 V. It can be observed that lower   val-

ues represent a slow charging behavior, whereas 

higher   values indicate faster charging. The simu-

lation also depicts the flexibility in modeling using 

fractional order  . 

The model in equation (1) has been widely used 

in the literature as it is simple and fits well with the 

experimental data at both high and low frequencies. 

Frequencies between the range of 10 mHz and 

1,000 Hz were utilized to model the impedance, 

where   ≈ 1 for the frequency range of 50–215 mHz 

and   ≈ 0.5 for 450 mHz to 100 Hz [30, 32]. The 

model was also used in a study for the step response 

of commercial SCs [29]. In [33], the calculation of 

capacitance, power, and energy of SCs was shown 

on the basis of constant current step and linear volt-

age inputs. The same model was also used in [34] to 

study the effect of changing selected parameters of 

SCs on the output terminal voltage when charging 

and discharging. However, in [35], the author pre-

sented a similar model circuit but based on a sub-

diffusion equation. This proposed model had a CPE 

impedance of                     , where   

is the capacitive time constant. The model based on 

ZCPE2 can be written as 

2

1
( )SC s

Ts
Z s R

Cs






  .  (6) 

Another model expression is presented in [36] 

based on the constant phase transfer function                  to describe the RC model more ac-

curately. This presented the transfer function as 

3

( 1)
( )

SC s

Ts
Z s R

Cs


  .                                             (7) 

Suppose the confluent hypergeometric function is 

defined as 

0

( )
( , , ) ,

( ) !

n

n

n n

b x
f b c x x

c n





     ,  (8) 

where      and      are the Pochhammer symbols, 

defined by 

( )
( ) , 0,1,2,3,4......

( )
n

g n
g n

g

 
 

  

 (9) 

Then the time domain output voltage from the RC 

transfer function in equation (7) with a unit step cur-

rent input can be given as 

1

( ) (2,2 , )
(2 )

t

T
o

T t t
v t e f

C T

 





 

 
. (10) 

Moreover, in [37], a similar model, but with CPE 

impedance used, is presented as 

4

coth
CPE

R Cs
Z R

R Cs






 ,  (11) 

where    is the resistance that spans the Warburg 

region at 45°. At lower frequencies, the impedance 

of the CPE is estimated using 

4
0

1
lim ( )CPE
s

Z s
Cs

 ,  (12) 

and at higher frequency, equation (11) is estimated to 

be a fractional integrator of order 0.5 and is given as 
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4 0.5
lim ( )CPE
s

R C
Z s

Cs




 .  (13) 

In general, the network structure of the SC in 

Fig. 4 is simple for circuit analysis and transfer func-

tion derivation, which explains its wide use in multi-

ple studies. CPE impedance is the most altered vari-

able in different studies to best capture the possible 

behavior of the SC. 

 
3.2. Poles and zeros model  

The RC model in equation (1) can be extended to 

incorporate zeros of order  , ranging from       

rather than just having poles. The study in [32] 

shows that this can lead to a transfer function for the 

system to be  

0

1

( )
SC s

s

w
Z s R

Cs





 
 

   . (14) 

The advantage of using this form of the transfer 

function is to allow extraction of impedance parame-

ters more appropriately when considering control 

diagrams like the Nyquist plot and the Bode dia-

gram. This usually takes into account the changes in 

the phases at respective frequencies. 

 
3.3. Structural model  

The electrochemical process that takes place in-

side the SC is difficult to explain. Therefore, elec-

trochemical elements are used to describe some of 

the processes together with a combination of capaci-

tors and resistors that form a fractal array. In gen-

eral, three constant phase or electrochemical ele-

ments are shown in the literature [38] as follows: 

 Warburg impedance,      , is an element 

that describes the frequency depending on 

semi-infinite diffusion and the potential dis-

turbance. This element is described mathemat-

ically as 

  K
W j

j



 ,  (15) 

where K  is a constant. 

 Bounded Warburg element,      , describes 

the linear diffusion that takes place in a ho-

mogenous layer of finite thickness. It is math-

ematically described as   

 
 cothK B j

O j
j





 ,  (16) 

where B is the ratio of the diffusion layer thickness 

to the diffusion coefficient of the element. 

 The Havriliak–Negami function-based element 

accounts for the asymmetric and broad nature 

of dielectric dispersion. Graphically, the 

broadness of the impedance curve is denoted 

by  , and the shape of the graph is determined 

by the parameter  , where both of these pa-

rameters range from 0 to 1. The parameter    denotes the relaxation time. The function is 

defined as 

 
   0 0

1

1

H j

j C C j



 






   

.  (17)  

On the basis of the three aforementioned electro-

chemical elements, three models were used in [38] 

with structures shown in Fig. 6 (a–c). 

 

 

W

C

R1

R2

O

C
R1

R2

H

R1

R2

R3C

L

(a)

(b)

(c)  
Fig. 6. Electrical circuit model for (a) Warburg, (b)  

bounded Warburg, and (c) Havriliak–Negami  

function-based models 

  



Prasad R., Mehta U., Kothari K. / Resource-Efficient technologies 1 (2020) 1–15 

 

 

6 

3.4. RC parallel model  

After a charging or discharging phase of an SC, 

there is a diffusion process that results in thermal 

energy dissipation. The loss due to internal heat can 

be modeled as   . The leakage current due to paral-

lel resistance can be considered with   . The model 

accounting for the thermal dissipation during charg-

ing and discharging of SCs is shown in Fig. 7. A 

similar model was proposed in [39] and analyzed 

using integer-order calculus. Later, this model was 

studied with fractional-order calculus to account for 

the self-discharge phenomenon more accurately 

[40]. The fractional-order transfer function was de-

veloped as 

   
  1 2

V s s s
G s k k

I s s a s a

 

 

 
     

,    (18) 

where 

1 2

1
, ,

s p

s

p p

R R
k R k a

R C R C


   .  (19) 

C RP

Rs

 
Fig.  7. Supercapacitor model accounting the thermal  

dissipation during charging/discharging 

The transfer function expressed in equation (18) 

can be transformed to the time domain by using the 

Mittag–Leffler function. The generalized equation, 

assuming zero initial conditions, can be shown as 

0

1

0

2

0

( ) ( ( ) (( 1) ))

( ( ) )

( 1)
,

( ( ) )
( )

( 1)

N

k

j

j

j

j

v t i kT i k T

a t kT
k

j

a t kT
k t T

j








 











   

  
      

  
    







,  (20) 

where                  . This model was used 

in [40] to estimate the voltage at the terminals of the 

SC after a very long period. The same electrical cir-

cuit model was also used in [41] but was modeled 

mathematically using the Cole–Davidson (CD) and 

Cole–Cole (CC) relaxation models. The impedance 

transfer functions obtained using these theories are 

given by equations (21) and (22), respectively: 

 

 

1 1

( ) ;
1

1

s
s

p

CD

p

R
sT sR C

R
G s

sT sC
R





 
     


  

 

(21) 

1 1

( )

1

.

1

1

s s
s

p p

CC

p p

s

p p

R R
s T sR C

R R
G s

T
s sC

R R

s T sR C

T
s sC

R R

 




 




   
          


 

 


 

  (22) 

However, Orzylowski and Lewandowski [41] 

suggest that the CC relaxation-based SC model is 

likely to present a simpler implementation and anal-

ysis because it does not contain the complexity pre-

sented by the CD model. The CD model contains a 

binomial raised to a fractional power, β, which caus-

es the complexity. On the other hand, the CD model 

presents a much more accurate representation of the 

frequency and time domain responses of the SC. 

 
3.5. Nonlinear Gorh's model  

A nonlinear model based on Gohr's half-porous 

model, as illustrated in Fig. 8, was studied in [42]. 

Analysis of the electrical model can be used to de-

rive the following expressions: 

   

   

 
 

   

1

1

1

11

,

1
and ,

1

n

E Ek

k

n

S Sk

k

n
DL

k DL k I k

Z s Z s

Z s Z s

C k s

Z s C r s





















  

(23)

 

where     is the double-layer capacitance,    is the elec-

trode/electrolyte resistance,    is the total electrode im-

pedance, and    is the total electrolyte impedance. 
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Fig. 8. Distributed half-porous model of a capacitor 

The interfacial behavior of the electrode,      , 

can be approximated using a CPE impedance with 

fractional order  , as follows: 

 1

1
Z s

Cs
 .  (24) 

The total impedance for the half-porous model 

shown in Fig. 8 incorporating the rough nature of the 

electrode/electrolyte interface can be obtained as 

   

  
  

2

1

2
1

2

2

2
c

(

oth .

) S E S E

S E S E

S S E

SC

E

S E

S E

Z Z Z Z
R

Z Z Z Z C s

Z Z Z Z
Z Z C s

Z Z C

Z

s

s 





  
 

  




 
 

  (25) 

This model can be rewritten as a function of volt-

age by using the Padé approximant for the hyperbol-

ic cotangent function in the form of 

1 2

3 ( ) 2 ( ) ( )

3 2 1

4 ( ) 3 ( ) 2 ( ) ( )

3 2 1

( ) ( ) ( )

( ) ( ) ( ) 1
.

( ) ( ) ( )

SC

V V V

V V V V

Z s K V K V

V s V s V s

s V s V s V s

  

   

  
  

 

  





 

(26) 

To transform the equation into a nonlinear form, 

the Taylor series approximation with integration 

technique is used, as in [42]. This results in the non-

linear model 

1
2

2
3

3
4

4
1 2 2 3 3 4 1( ) ( ) ( ) ( )

d z
Z

dt

d z
Z

dt

d z
Z

dt

d z
V Z V Z V Z K V I

dt















   













  














  

1 1 2 2 3 3 4 2( ) ( ) ( ) ( )V Z V Z V Z V Z K V I         (27)
 

This nonlinear model's parameters can exhibit the 

behavior, in terms of voltage dependency, for charge 

and discharge very accurately. However, this model 

does not accurately capture the charge recovery pe-

riod. As explained in [42], the SC gradually decreas-

es in voltage and the model demonstrates a rapid de-

crease to a final voltage. 

 
3.6. Electrosorption theory-based SC model  

The change in temperature of an SC during 

charging–discharging phases can be credited to 

electrosorption. During the charging process, the 

ions are adsorbed into the electrode, whereas in the 

discharging phase, the ions are desorbed. The 

electrosorption phenomenon is linked to the elec-

trode–electrolyte interface voltage, which might 

cause the nonlinear behavior such as self-discharge 

or relaxation in SCs. 

The model of N. Bertrand et al. [43] is based on 

this phenomenon and its circuit diagram, given in 

Fig. 8. On the basis of the adsorption theory, the im-

pedance at the electrolyte–electrode interface is de-

rived to be 

1

1

1
( ) adsk s

Z s
Cs

 
 ,  (28) 

where γ is the fractional (real) order positive value 

and      is the adsorption coefficient. The fractional 

order signifies the characteristics of diffusion spe-

cies that are adsorbed into the porous structure. Con-

sidering the electrode impedance is zero, the overall 

SC model described by equation (29) is based on the 

electrolyte–electrode impedance, as per equation 

(28) and the transmission line theory, 
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1

_

_

1

1
( )

coth ,
1

ads

SC S l eq

l eq

ads

k s
Z s R R

Cs

R Cs

k s










  

 
   

 

(29)

 

where       is the equivalent transmission line re-

sistance. 

To simplify the complexity of hyperbolic cotan-

gent function in the time domain, and for simulation 

purposes, a better approximation of the aforemen-

tioned model is approximated using the Taylor ex-

pansion approximation. The approximated function of 

the model for low-frequency regions can be given as 

1
_

_

(1 )
( )

3

l eq ads
SC LF s

R k s
Z s R

Cs

 
  

  
(30) 

The high-frequency region is modeled to have an 

approximate impedance of 

1
_

_

1

_

1

_

(1 )
( )

10

(1 )
0.233 2.45

.
(1 )

0.233 2.45

l eq ads

SC LF s

ads
l eq

ads
l eq

R k s
Z s R

Cs

k s
R

Cs

k s
R

Cs














   









  (31) 

However, the same low-frequency model was used 

for a more concise presentation in [43]. This model is 

then transformed into a nonlinear model by represent-

ing the equation in pseudo-state space and applying 

the pseudo-integration technique. This gives a nonlin-

ear model that accounts for the charge and discharge 

behavior where only the parameters that denote the 

adsorption and desorption are different, 

2

2

_

1

( ) ( ) ( )

3

( ) ( )
( ) ( )

2

( ) (

,

)
,

2

;

;

dl sc

ads sc ads

ads sc

l eq

sc dl ads s sc

ads des

ads ads

ads des

d
V I

dt C

k V sign I k Vd
V I

dt C

R
V V V R I

K V K V
k V k V

K V K V









 


   


 
     


  




     (32) 

where the subscripts    ,    , and    denote ad-

sorption, desorption, and double layer, respectively. 

Further,   is a constant variable, and   and   denote 

voltage and current symbols, respectively. 

The nonlinear behavior attributed to the 

electrosorption phenomenon was investigated in [43] 

and was found to be non-negligible. Because of this 

phenomenon, there is some charge transfer between 

the adsorbed ions and the electrodes. This charge 

transfer causes a rise and decrease in capacitance 

during the charge and discharge phases. The test, 

conducted on a 2000F/2.7V SC, showed that the 

fractional order   was c1ose to 1, which depicted the 

fractional-order behavior of the SC. 

 
3.7. A nonlinear model SC for embedded applications 

An SC model based on the circuit given in Fig. 8 

was also investigated in [44]. This type of circuit 

could be embedded on electronic boards, such as in 

calculators. The model considers the electrode im-

pedance as zero, whereas the electrolyte impedance 

can be assumed to be resistors. Thus, the following 

equations are derived: 

( ) ( )

( )

1

1

1
( )

I

s k el k

n

el el k

k

z r

R r

Z s
Cs















  
(33) 

The electrolyte–electrode interface impedance, or 

the constant phase impedance in this particular mod-

el, is approximated to be ZI(s), which is slightly dif-

ferent than in equation (20). In this case, the total 

impedance of the SC is given through transmission 

line theory by  

1
12

1 2
1

( ) coth ( ( ) )
( )

el
SC s el

R
Z s R R C s

C s







  
    

   
. (34) 

Because of difficulties in implementing the coth 

function in the real time system, the Padé approxi-

mation method is used. The final form is then ob-

tained and works accurately for frequencies ranging 

from 1 mHz to 10 Hz. 

2
1 1 1

1 2 2

1
 ( )

1
SC

R
Z s R R

C s R C s
 



    


,   (35) 

where the variables         and         are con-

stant multiples of the parameters     and  , respec-

tively, and are shown in the following equations: 
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1 2

1 2

, 0.233R
10

,  1.

 

2

el
el

R
R R

C C C C

 

 
  (36) 

Using the same technique as in the aforemen-

tioned method, the model described in equation (35) 

can be transformed into a nonlinear model as 

1 1

1 2
2 2

2 2 2 2 1

1 2 2 1 2 2 1

1 1

( ) ( )s

d z d z
z z I

dt dt R C R C C

V Z C R C R z R R I

 

 

 

   

    

  (37) 

This model was designed for embedded systems 

due to its simplicity when it comes to nonlinear 

model implementations. To embed the model, the 

fractional integrator must be approximated by an 

integer transmittance. This model was evaluated 

with a Maxwell 2000 F/2.5 V SC, which showed 

there was an approximate 1 % relative error for a 

10 A current profile and a 2 % relative error for a 

100 A current profile. 

 
3.8. Fractal stationary model  

Electrochemical impedance spectra were studied by 

Martynvuk and Ortigueira [45] with the help of the 

Nyquist plot. An HE0120C-0027A SC was used in the 

experimental study with a capacitance of 120 F rated at 

2.7 V. Unlike the model in equation (14), which is 

based on two frequency ranges, a low-frequency re-

gion with       and a high-frequency region with       of a Nyquist plot for impedance spectrum, 

this model consists of three regions. These regions 

consist of the same high and low-frequency ranges, but 

a middle-frequency region, where      , is added. 

This model is formed from a series resistor,   , two 

capacitors,    and   , and a fractional element,  , of 

order ≤2. The transfer function derived for this model 
is given by equation (38), and its electrical equivalence 

is shown in Fig. 9. The fractional element of parameter   can be realized by the general impedance converter 

(GIC), as shown in Fig. 10. 

 

R Ca Cb D

Supercapacitor

 
Fig. 9. The model based on three frequency regions 

 





 D



aC

bC

aR

bR

cR

 

Fig. 10. Fractional-order element   of the order      , realized by GIC 



Prasad R., Mehta U., Kothari K. / Resource-Efficient technologies 1 (2020) 1–15 

 

 

10 

[ ][1 ]
( )

1 1 1
.

ST

a b

s A Bs
H s k

s

R
s C s C s D

 

 

   





 
 

   
  

(38) 

The expression derived from Fig. 10, which rep-

resents the element, is given as 

(1/ )(1/ )
( )

1
,

c

a b

c

a b a b
s

s

s C s C R
Z s

R R

R

C C R R

D

 
 

 

 





 

 



 (39) 

where 

a b a b

c

C C R R
D

R
 .  (40) 

The frequency model in equation (39) can easily 

be transformed into the time domain by performing 

the Laplace inverse transformation. The impulse re-

sponse        of transfer function (38) is given by 

equation (41), and equation (42) is the unit step re-

sponse       of the system, as follows: 

1

1 ( ) 1

( ) ( ) ( )
( )

( ) ( );
( ) ( )

a

imp

a

b a b

b

t
h t R t u t

C a

t t
u t u t

C b D a b




  

  


 
  

  

(41)

 

( )

( ) ( ) ( )
(1 )

( ) ( ).
(1 ) (1 )

a

ST

a

b a b

b

t
h t Ru t u t

C a

t t
u t u t

C b D a b



  
 

 
    

 

(42)

 

This model can capture the dynamics even when 

operating in the potential relaxation mode. Using the 

fractional model, a more reliable simulation of a sta-

tionary mode operation of an SC could be made. 

This is important because the potential relaxation 

lasts for a longer duration (until steady state is 

reached) due to more time being taken up for the 

transient phase to finish after charge and discharge. 

 
3.9. RC ladder network-based model 

An RC parallel circuit, as shown in Fig. 11, was 

investigated in [46]. The internal power losses, 

which may arise because of charging and discharg-

ing, are represented by   , and the current leakage is 

represented by    in the SC model. The fractional-

order differential equations for the model are shown 

as equation (43) for the charging phase and as equa-

tion (44) for the discharging phase. 

( )
( ) ( )

s s

d x t
C R x t u t

dt





  
 

(43)

 

( )
( ) ( )

s s p

d x t
C R R x t

dt





  
 

(44) 

RP

Rs

CsX(t)

 
Fig. 11. RC parallel electrical model 

To capture the distributed electrolyte resistance 

and double-layer capacitance, the same RC network 

is extended into a larger RC transmission line model 

and can be represented by Fig. 12.  

 

Rs

Cs

Rs

Cs

Rs

Cs

Rs

Cs

RsRsRs

Rs

X1 X2 X3 Xn

 
Fig.12. RC Ladder Network 
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The dynamic behavior of the model in Fig. 12 can 

be described with a simple fractional-order differen-

tial expression in state space form as 

( )
( ) ( )

s s

d x t
C R F Ax t Bu t

dt





  ,  (45) 

where the variables  ,  , and   are the coefficient 

matrix; the variable      is a     matrix; and      

are matrices of order    . 

Furthermore, the transfer function based on the 

RC ladder can be written as 

( ) k

k

b
G s

s a



,  (46) 

where 

2

2

2

1,2,3,......, .

4sin
2

(1 4sin )
2

2
sin

1

(1 4sin )
2

/ ( 1)

k

k
k

s s

k
k

s s

k

k n

a

C R

k
n

b

C R

k n









 









 

  (47) 

The larger extended RC transmission line net-

work is more likely to capture the resistance and 

double-layer capacitance that extends to the depth of 

the porous structure of the SC. The addition of more 

RC elements adds more dynamics compared with 

the RC ladder network. 

 
3.10. Linear parameter varying-based  

fractional model  

Kanoun et al. [47] present porous impedance (al-

so called CPE) using a similar structure to the one 

illustrated in Fig. 4. The impedance model in equa-

tion (48) is based on the unique pore model of the 

capacitor and is given by 

0
1 0.5( )CPE

b
Z b M s

s
  .  (48) 

In general, the integrator function,    of order  , 

is derived by cascading elementary phase delay fil-

ter, as defined by equation (49). In this model,       and can be defined in the frequency range           

1
'

1

( )

1

c

n i
n b

i

N

i

s

M s
s













   (49) 

Function    is defined through the distribution of 

poles and zeros as 

1

log( )
, ,

log( )
i i i i

n
   
    ,  (50) 

and the recursive linked parameters,   and  , of 

the integrator are 

1

,
c c

n n

N N
h h

b b

  
 



   
    
   

.  (51)
 

It is noted that such multipored models can also 

be described by adding two fractional integrators of 

order   and    . Thus, the output voltage to input 

current transfer impedance is given by 

0 1

/2
( )CPE n

b b
Z s

s s
  .  (52)

 Given that the fractional integrator is based on the 

phase-lead filter,    of order   is defined by 

'

1

1

1

( )

1

cNn

b i
n

i

i

s

P s
ss

 











 ,  (53) 

where the complete description of the integrator nP  

is given as 

1

1

log( )
, , 1

log( )

,
c c

i i i i

n n

N N
h h

b b

n
   


  
 





    

   
    
   

  (54) 

The model in equation (52) can be rewritten in 

terms of equations (49) and (53) as follows: 

0 1 /2( ) ( )
CPE n n

Z b sMb P s  .  (55) 

Thus, this SC model is based on Fig. 4 with po-

rous impedance defined by equations (52) and (55). 

The multipore description is much more accurate in 

terms of describing the infinity of parallel pores in 

the porous structures of the electrodes. Both of the 

models produce similar results; however, the single 

pore model is much more preferable in order to sim-
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ulate the output voltage time response when supplied 

with charging current. 

 
3.11. Flexible SC model 

A more generalized network was proposed by 

Prasad et al. [48]. Their model offered to ease the 

difficulty of selecting an optimal model for an SC 

when analyzing/designing systems using SCs. The 

proposed model is illustrated in Fig. 13. 

 

R2Cα

R1
R3  

Fig. 13. Flexible SC model 

Impedance for this model can be described by 

1 2 1
1 2

3 3

2

3 3

1

( )
1

1

SC

R R R
C s R R

R R
Z s

R
C s

R R







 
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 
 

  
   

 (55) 

Using the charging circuit given in Fig. 4 with the 

SC model in Fig. 13, the charging equation in 

Laplacian form is derived as 

1

3

1 2
2 1

3

1

1

3 3

1 2 2
2 1

3 3

( )

( ) ( )

( ) ( ) ( )

( (0))

1

o

in in

in in in

V s

R
V s V s

R

R R
Cs V s R V s V s R

R

s CRv

R R

R R

R R RR
Cs R R R

R R











   
 
  
       
  
  

  
      

           

  (56) 

The time domain step response with a magnitude        based on the Mittag–Leffler function in equa-

tion (3), is given as 

1

3
, 1

1 2 2
2 1

3 3

( ) ( )

( ) ( )

step step

sc

R
v t v t

R
v t t Wt

R R RR
C R R R

R R

 
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 
 

    
  

        

 

1 2
2 1

3

1 2 2
2 1

3 3

,1

( ) ( ) ( ) (0)

( )

step step step

R R
v t R v t v t R Rv

R

R R RR
R R R

R R

Wt




    
  
    
  

 

 (57) 

where  

1

3 3

1 2 2
2 1

3 3

1
R R

R R
W

R R RR
C R R R

R R

 


     
 

.  (58) 

For the discharge equation, the input voltage val-

ue could be set to zero, indicating no voltage supply. 

The usefulness of this model was demonstrated 

on three different branded SCs, each containing 

three different capacitance values. This model took 

the most optimal form based on the parameter opti-

mization that could be achieved from the model in 

Fig. 13. The study found that the nine SCs demon-

strated a total of four sub-models of Fig. 13: 1) only 

fractional capacitor model, 2) simple porous model, 

3) RC parallel network, and 4) RC parallel network 

with no   . This model helps in designing systems 

incorporating SC that require modeling and may 

help improve accuracy. 

 
3.12. Summary of fractional SC models 

The fractional-order transfer function has been 

extensively utilized in SC modeling. Further, interest 

in using fractional calculus-based modeling has been 

increasing because of the increase of various electri-

cal applications. Examples of these applications in-

clude modeling of radio frequency and microwave 

designs [49], modeling inductor coil loses [50], ex-

panding the versatility and freedom of electrical cir-

cuits [51, 52], and generalizing the Smith chart in 

fractional domain to plot and match the radio fre-

quency and microwave regime fractional impedanc-

es [53]. 

From various studies, it has been concluded that 

SCs exhibit fractional behavior due to anomalous 

diffusion [38, 43] and the dielectric relaxation phe-

nomenon [41–45, 54]. Non-integer orders allow for 

one more degree of freedom than integer orders, re-

sulting in better approximation of the complex sys-

tem dynamics. In other words, the non-integer order 

of a transfer function can describe a system's dynam-

ics with greater accuracy than the higher-order inte-

ger. However, the modeling of the implemented cir-
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cuit is less complex when using higher-order integer 

transfer functions. 

 
Table 1. Summary table 

Model Remark 

1. Simple porous model  Simple to use in analysis. Less 

complex in nature. 

2. Poles and zeros 

model 
 Appropriate for frequency domain plot 

analysis, such as Nyquist plot and 

Bode diagrams. 

3. Structural model  Introduces a complex set of constant 

phase elements, which captures more 

dynamics. 

4. RC parallel model  Slightly better than the simple porous 

model because dynamic changes due to 

leakage current are accounted for. 

5. Nonlinear Gohr's 

Model 
 Nonlinear behavior is handled better 

using this.  

6. Electrosorption theo-

ry-based SC model 
 Accounts for the nonlinearity induced 

because of electrosorption phenome-

non. 

7. A nonlinear model for 

embed applications 
 Designed for embedded system appli-

cations due to its simplicity. 

8. Fractal stationary 

model 
 Similar to the simple porous model but 

more dynamic in nature because it has 

a couple of fractional capacitances and 

a fractal element in series with a resis-

tor. For frequency analysis, it covers a 

much wider range of frequencies. 

9. RC ladder network-

based model 
 More dynamic in nature compared with 

the simple porous and RC parallel 

models.  

10. Modeling based on 

fractional integrators 
 Describes the behavior of an elec-

trode's porous structure more accurate-

ly.  

11. Flexible SC model  A more generalized model, it eases the 

need of selecting an optimal model 

from the vast range available. 

Fractional calculus-based dynamic models are 

usually descriptions over a wider frequency range 

due to its advantages of long memory characteris-

tics. They also capture transient state behaviors, 

which arise because of the dielectric relaxation. 

A summary of all the fractional models analyzed is 

given in Table 1.  

 

4. Conclusions 

SCs are commonly used in power supplies, re-

newable energy applications, electric vehicles and 

other applications. With so many applications, SC 

models in various electrical circuits are very critical 

and important to consider in order to successfully 

control the charging and discharging of energy stor-

age devices. 

This paper presented a survey of recent literature 

pertaining to fractional modeling of SCs. Fractional 

calculus has been vastly used in biochemistry over 

years, and it is now being utilized successfully in 

engineering fields. First, a brief introduction on var-

ious types of SCs with respect to internal structure 

was described. Then, this paper presented a sum-

mary of fractional models that are practically accu-

rate as well as feasible to incorporate in analysis and 

to control power in applications. The survey depict-

ed various models that attempt to capture the dy-

namics of SCs while maintaining meaningful pa-

rameters. Additionally, it showed how fractional or-

der is being utilized in impedance modeling effec-

tively for electrical applications.  
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