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Abstract 

If the discharge current into a plasma contains direct and variable components, the plasma develops wavelike acoustic instabilities 

and eventually becomes an acoustoplasmа. Such instabilities lead to bistability, multistability, and hysteresis phenomena of the 

current–voltage characteristics, causing abrupt changes in the state of the plasma medium. These changes can be imagined as 

phase transitions and described using catastrophe theory. In the present study, the experimental plasma data are approximated by 

the equations of catastrophes. After reducing the catastrophe equation to canonical form, the points of possible phase transitions 

are determined. The phase transition coordinates are then converted to coordinates in the experimental system by inverse trans-

formations. In this way, we determine the points of possible phase transitions in a real experiment. Finally, the parameter changes 

in an acoustoplasma discharge are obtained by solving incorrectly posed inverse problems. The inverse problem of the experi-

mental data is solved at each current time. Within the neighborhoods of singular points, the incorrectly posed inverse problems are 

solved by the theory of catastrophes. The proposed methods are applicable to various fields of science and technology. 
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1. Introduction  

As a nonlinear medium in a self-consistent sys-

tem, plasma establishes both stable and unstable 

states [1, 2]. Under an external action (such as a cur-

rent modulation), wavelike acoustic instabilities ap-

pear in the plasma, which then becomes an acousto-

plasma [1, 3, 4]. Such instabilities cause abrupt 

changes in the plasma environment, hysteresis, bi-

stability, and multistability and other bifurcations 

[1–10]. Jumps and instabilities in acoustoplasmas 

have been experimentally investigated [3, 4]. Other 

researchers have studied multistable states of the 

discharge parameters [3, 5, 6], hysteresis in gas-

discharge plasmas [3, 7, 8], jumps in a magnetized 

gas-discharge plasma, and jumps in a plasma excited 

with radio-frequency waves [10, 11]. 

Recently, phase transitions have been interpreted 

not only in the conventional thermodynamic sense, 

but also as any transition from one metastable state 

to another in the system of interest [1, 3, 5, 9, 12]. In 

this view, each metastable state is considered as a 
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separate phase. In 2016, Kosterlitz, Thouless, and 

Haldane were awarded the Nobel Prize in Physics 

for their discovery of topological phase transitions 

and topological phases of matter. 

The bifurcations, jumps and hysteresis obtained in 

our experiments can also be represented as phase tran-

sitions. Expressing the measured dependencies of the 

parameters as potential functions, such jumps and 

phase transitions can be described by the mathematical 

theory of catastrophes (hereafter simply called the the-

ory of catastrophes (TC)) [1, 3, 9, 13–17]. An early TC 

description of discharge jumps can be found in [18]. 

After the jump, the plasma can either transit to a 

new state or relax to its initial state. 

A mathematical model of acoustoplasma interac-

tions can be constructed from the experimental results. 

Some parameters not obtained from directly solvable 

problems can be calculated using inverse mathematical 

problems. The most intractable inverse problems are 

incorrectly posed inverse problems (IPIP). 

The data processing methods discussed in the 

present work detect the presence of jumps and hyste-

resis in the plasma parameters that are not seen dur-

ing experiments. For instance, if the experimental 

parameters are insufficiently discretized, or the 

jumps in one parameter are compensated by a 

change in other parameters, they will be absent in 

the experimental data. TC theory can purportedly 

identify the points of parameter jumps in acousto-

plasmas [1, 3, 9]. This study also proposes a new 

method for solving IPIP, especially at the jump 

points (singular points). The equation of a canonical 

mathematical catastrophe is then built from the ex-

perimental results. Both direct and inverse problems 

are solved, even when a priori information about the 

parameter interdependences is lacking. In this paper, 

the proposed procedures are applied to acoustoplas-

mas, but they can also determine phase transitions, 

parameter jumps, and emergency situations in other 

areas of science and technology. The only condition 

is the potentiality (or at least quasipotentiality) of the 

studied functions. Sudden jumps in the parameters 

of real devices can lead to real (rather than mathe-

matical) catastrophes. Therefore, determining the 

points of possible parameter jumps is important. 

 

2. Background Information 

 2.1. Generality of IPIP and the theory of catastrophes 

This subsection briefly discusses solutions to in-

verse problems [9, 19–24] and the TC [9, 13–17]. De-

fining a function obtained from experimental data as 

u(x), an experimental result can be written as [19, 22] 

u(x) = A[x, z(s)],  (1) 

where x is an independent variable, A is an operator, 

and z(s) is a dependent variable. 

To solve the inverse problem, we must find z(s) 

given the experimentally determined function u(x) 

[20]. 

Direct problems (in which the reasons are known 

and the consequences must be found) can be solved 

when a single causal relationship is known. In con-

trast, inverse problems (in which the consequences 

are known but the reasons must be found) can be 

solved only when many causal relationships are 

known, and are sourced from several reasons. There-

fore, inverse problems require a large experimental 

database [23]. 

Inverse problems are usually nonlinear and have 

several roots, which also complicates their solution 

[21, 22]. 

Let us compare the formulations of the TC and 

IPIP. 

The theory of catastrophes was formulated by 

Arnold [13]. In this context, a catastrophe is any ab-

rupt response of the system to a smooth change in 

the external conditions. 

IPIP as they are discussed in [19]. A task is posed 

correctly if 1) the solution exists, 2) the solution is 

unique, and 3) the solution is stable to small data 

perturbations. If at least one of these conditions is 

violated, the task is posed incorrectly. 

Conditions 2 and 3 are more often violated than 

Condition 1. The uniqueness of the solution is vio-

lated by nonlinearity in the inverse problem [1, 3, 9]. 

Meanwhile, the stability of the solution is violated 

when a small change in an independent parameter 

induces a jump in the dependent parameters. Thus, 

under a violation of Condition 3, the task becomes 

incorrectly posed and coincides with the formulation 

of catastrophes. Such problems can be solved by TC 

[9, 17]. 

 
 2.2. Theory of catastrophes and the definition of jump 

points (singular points). 

TC is a mathematical tool that approximates a 

function by a Taylor series, considering the Morse 

Lemma and Thom's Theorem [13, 15]. 

Morse Lemma: In the vicinity of a non-

degenerate point, a function of a changing variable 

can be reduced to a simple standard form. 
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Thom's theorem: When the number of inde-

pendent parameters is four or fewer, almost any 

physically realizable function can be reduced to sev-

en polynomials defining seven elementary cata-

strophic responses [13–16] to local changes of vari-

ables. Among these is the butterfly catastrophe 
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In Eq. (3), n is the degree of the polynomial (in 

catastrophe equations, n = 3, 4, 5, 6). 

Let us consider the detection of phase transitions 

and parameter jumps in experimental data. As men-

tioned above, these jumps may be unseen due to in-

sufficient discretization of the measurements, or 

when jumps occur between some coefficients ak but 

do not appear directly in the curve formed by the 

measurements. 

For this reason, TC [13–17] proposes the use of 

separatrices, defined as curves that divide the func-

tion areas into segments with sufficiently many and 

different numbers of jumps, or with no jumps at all. 

When a line connecting the values of the coefficients 

for different parameters of the experiment intersects 

separatrix, there will be a jump of some parameter, 

or some coefficient ak in Eq. (2). As shown in Fig. 1, 

regions bounded by separatrices can contain differ-

ent numbers of minima and maxima, implying dif-

ferent numbers of unstable states when jumps are 

possible. Inside the triangle formed by the separatri-

ces in Fig. 1 there are two maxima. Above the trian-

gle there are no maxima, whereas the remaining are-

as each contain one maximum. The number of max-

ima corresponds to the number of unstable points, 

where jumps are possible. These jumps can be inter-

preted as phase transitions in the studied system. 

 

 
Fig. 1. Schematic of potentials in different areas [14] 

 
Fig. 2. Orders of phase transitions [15] 

Figure 2 shows how the order of the phase transi-

tion can be determined by the method described in 

[15]. For two different states of an experiment, we 

obtain two catastrophe equations of the same form 

(e.g., Eq. (2)) but with different coefficients, (a1, b1, 

c1, d1) and (a2, b2, c2, d2). Figure 2 shows the situa-

tion for the coefficients (a, b). If a straight line con-

necting two points with coefficients (a1, b1) and (a2, 

b2) in these same-form catastrophe equations inter-

sects one separatrix, then a first-order phase transi-

tion occurs. If the coordinates of the parameters of 

one of the equations coincide (but do not intersect) 

with the separatrix, then a zero-order phase transi-

tion occurs. If a straight line intersects both separa-

trices simultaneously, then a second-order phase 

transition occurs. If the straight line never touches 

the separatrices, then no phase transition occurs. 

These operations are sufficient for detecting the 

presence or absence of phase transitions in the sys-

tem. 

 
 2.3. Processing experimental results using  

catastrophe theory 

As an example, let us consider the measurement 

of current and voltage. A two-beam oscilloscope ac-

quires oscillograms of the discharge current in the 

discharge tube and the voltage across the discharge. 

The discharge current is modulated by a sinusoidal 

signal of a certain frequency. To study phase transi-

tions in acoustoplasmas, this sinusoidal signal must 

necessarily contain a constant and a variable compo-

nent. Owing to the processes occurring in the acous-

toplasma, the oscillograms differ from the sinusoidal 

ones and exhibit a phase shift between the current 

and the voltage. We modulate the current (i.e., set 

the current as the independent parameter) and meas-

ure the voltage at discharge (i.e., the dependent pa-

rameter) [9]. 

In our case, the current and voltage are quantized 

over time during the modulation period (from the 

beginning to the end of the period). The start point 
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of the quantization is determined by an independent 

parameter (in this case, the current). The quantiza-

tion is separately performed for each of the inde-

pendent parameters z, and for each of the dependent 

parameters. Note that the beginnings of the quantiza-

tions of all parameters must be synchronized with 

that of any one independent parameter. 

To minimize the errors in calculating the fast 

Fourier transforms of the first six harmonics, we 

quantized the modulation period into 120 pixels (120 

is the doubled lowest common multiple for the six 

harmonics). As only the modulation period is quan-

tized, the quantization process is frequency-

independent. The instantaneous voltages obtained by 

the quantization depend on the instantaneous value 

of the current. Here, “instant” denote a time interval 

that is 120 times shorter than the modulation period. 

We thus obtain the current–voltage relationship at 

120 points during the modulation period. The coeffi-

cients a, b, c, d in Eq. (2), denoted by ai in Eq. (3), 

are determined by solving a system of 120 equa-

tions. The definition of the ai is described in [25]. As 

each coefficient is determined from 120 values, 

Eq. (2) and Eq. (3) approximate experimental data 

with high accuracy.  

The coefficients are then determined as [25] 

1
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k
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Figure 3 shows the experimental curve of the 

normalized discharge power (i.e., the ratio of the in-

stantaneous power to the average one) versus volt-

age during the modulation period (blue curve) and 

the experimental curve approximation by equation 

(2) (pink curve). From Fig. 3 one can see a good 

agreement between the approximating and experi-

mental curves. 

Let us consider the dynamic voltage–power charac-

teristics, which reveal the presence of power surges 

and voltages under a smooth current change [9]. A dy-

namic characteristic describes the behavior of an in-

stantaneous value of a measurable quantity during the 

monitoring period. The instantaneous powers are ob-

tained by multiplying the corresponding instantaneous 

currents and voltages (recall that the modulation period 

is divided into 120 pixels). The discharge reactance 

can be ignored over the entire measurement area. 

 
Fig. 3. Approximation of the experimental curve (blue line) 

by Eq. (2) describing a butterfly catastrophe (pink line) 

Note that both voltage and power are dependent 

parameters, meaning that this method is valid not 

only for connecting independent and dependent pa-

rameters, but also for analyzing two parameters that 

depend on a common variable. 

The presence of jumps is detected by the follow-

ing five-step procedure: 

Step 1. Normalize the experimental data to their 

average values and transform the normalized data 

into dimensionless values. 

The dynamic power–voltage characteristics are 

plotted in Fig. 4. Here the power and voltage scales 

are normalized to the average power (<W>) and av-

erage voltage (<U>), respectively. Whether jumps 

and phase transitions occur in this dynamic charac-

teristic is not clarified in Fig. 4. 

 

 
Fig. 4. Normalized dynamic power–voltage characteristics 

Step 2. Construct an approximate catastrophe 

equation, and reduce it to canonical form [13–15]. 

Separate power–voltage characteristics are con-

structed in distinguishable sections: in the first sec-

tion, the voltage increases from its minimum to its 

maximum; in the second section, it decreases from 

its maximum to its minimum. 

1

1 1 1 1

n N n N
k k
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For example, in the section of increasing the volt-

age the butterfly catastrophe Eq. (2) is constructed as 

follows: 
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Reducing (6) to the canonical form of (2), we get 
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where a = −2, b = 3.83, c = 0.3, and d = −3.13. Note 

that Wcannon is not (W/<W>). 

Step 3. Construct the separatrices of the canoni-

cal equation. 

 

 
Fig. 5. Separatrix for the coefficients a and c of Eq. (7) 

Step 4. Determine the points of possible phase tran-

sitions. 

The point with coordinates (a, c), denoted as (0.5, 

up) in Fig. 5, corresponds to a voltage increase from 

minimum to maximum during the modulation period 

at 0.5 kHz. Meanwhile, the point (0.5, down) corre-

sponds to a voltage decrease from maximum to min-

imum at the same frequency. Similar points (1, up) 

and (1, down) indicate the voltage increase (from 

minimum to maximum) and decrease (from maxi-

mum to minimum), respectively, at 1.0 kHz. As evi-

denced by the lack of intersections between the 

curve and the separatrices, no phase transition oc-

curred during the modulation period at 0.5 kHz. 

However, at 1.0 kHz, the plot intersects one separa-

trix, indicating a first-order phase transition. Thus, at 

a modulation frequency of 1.0 kHz, the system un-

dergoes a phase transition period in each modulation 

period of the discharge current.  

Step 5. If necessary, restore the measured values 

by inverse transformation of the normalized values. 

By processing the experimental data as described 

above, one can find new dependencies between pairs 

of parameters. Moreover, these dependencies can be 

expressed both by already known laws and as catas-

trophe polynomials. 

 
2.4. Procedure for solving IPIP, including  

at singular points 

To solve an incorrectly posed inverse problem, 

we determine or the coefficients of the equations, or 

the area over which the operator acts, or the initial 

conditions, or combinations of these factors. The 

most difficult task is determining the solutions in the 

neighborhoods of singular points, where the system 

parameters become discontinuous (note that at the 

singular points themselves, there is no solution). Af-

ter the jump, the system either returns to its previous 

state or transitions to a new state [19, 24]. 

It should be noted that acoustoplasmаs are char-

acterized by parameter jumps and phase transitions. 

Accordingly, almost all acoustoplasma phenomena 

are nonlinear with non-unique solutions, and most of 

them are incorrectly stated [9]. 

For a system of linear algebraic equations, Eq. (1) 

can be expressed as [20, 22] 

Az = U  (8) 

where z is the vector to be found, U is a known vector, 

and A = {au} is a square matrix with elements of au. 

Calculating the determinant of a system of N 

equations requires N
3
 operations. Error accumulation 

while calculating the measured values degrades the 

calculations, which eventually become meaningless. 

However, several methods for solving such systems 

have been proposed [20]. 

This paper proposes a new method for solving 

linear and nonlinear algebraic equations. The meth-

od is based on the processing of experimental data 

by TC, and uses non-square matrices [9, 26]. 

First, the (experimentally measured) oscillograms 

of the independent and dependent parameters are 

time-quantized as described above. 

In the case of one independent (z) and one de-

pendent (u) parameter, the matrices are simple and 

consist of one column and 120 rows. 
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If there are several independent parameters, then 

each of the zm independent parameters and um de-

pendent experimental parameters are quantized and 

inserted into the following matrix: 

* * * *
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* * * *

1.120 .120 1.120 .120

m m

m m

z z u u
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  (10) 

This matrix describes 120m equations Azij* = uij*; 

{i = 1–120}, {j = 1–m}. The index * denotes a prox-

imity value. 

We thus obtain a set of (i = 1–120) instantaneous 

values of the studied functions uij*, which depend on 

zij*. The instantaneous values of each function 

Azj* = uj* are approximated by TC. These approxi-

mations are true values of uj functions. 

Note that these approximating functions are ex-

pressed through the equations of TC, and not 

through the well-known mathematical formulations 

of well-known physical laws. 

Recall that the beginnings of the quantizations of 

all parameters must be synchronized with any single 

independent parameter. In this case, we can further 

investigate the dependencies between different uij
*
, 

thus solving inverse problems using the obtained 

database. 

Those, the present study is divided into several 

stages. 

In the first stage, based on the obtained experi-

mental database, all the independent and dependent 

parameters are quantized to 120 pixels (and initially 

synchronized with one of the independent parame-

ters). 

In the second stage, the direct problems using the 

first group of operators A are solved and matrices of 

uij* elements are obtained. 

In the third stage, based on the obtained set of 

values, a catastrophe approximation is constructed 

using Eqs. (3)–(5). 

In the fourth stage, it is determined whether or 

not there are singular points in the area under con-

sideration. For this the TC is using. 

In the fifth stage, the inverse problems are easily 

solved in the smoothly continuous regions. In re-

gions containing discontinuities, the inverse prob-

lems cannot be solved at the singular points. Instead, 

the cross-linkages are analyzed using bifurcation 

theory [9, 27]. The procedure is as follows: 

1. In the existence domain of the experimental 

parameters {A–D}, determine the set of singular 

points {B, C}. 

2. Divide the solution area (A–D) of the inverse 

problems into several sections {UA; UB; UC}, which 

exclude the singular points but are described by the 

same catastrophe equation. Solve the inverse prob-

lems separately in each of these areas. Formally, this 

step is represented as 

 

 

 

 

 

 

 

 

             

x D x B x C x D

A B C

x A x A x B x C

Udx U dx U dx U dx        (11) 

3. In the neighborhood of singular points where 

there are bifurcations, the solutions of the inverse 

problems are stitched [9, 27]. Integral functions are 

expressed in terms of catastrophe equations. 

4. Interpret the parameter jumps at the stitching 

points as phase transitions. 

It should be noted that from a purely mathemati-

cal perspective, the TC equation is a reasonable ap-

proximation to potential functions [14]. However, 

for applied tasks, the class of functions can be ex-

tended. For example, in the formulations of [13, 14], 

the electric field is a potential function, whereas the 

voltage (potential difference) is not. However, the 

potential difference in physics is a potential function 

determining the energy gained by a charged particle. 

In addition, the voltage function meets all require-

ments of TC. Sociology and other fields with no de-

veloped mathematical apparatus can also be de-

scribed by TC. 

 

3. Conclusions 

The main conclusions of the study are summarized 

below. 

1. A method for solving direct and inverse prob-

lems (including incorrectly posed ones) based on 

experimentally obtained data is proposed. The meth-

od digitizes the experimental oscillograms into 120 

discrete points (pixels) during each modulation peri-

od. The obtained instantaneous values of the pro-

cesses are assembled into non-square matrices with 

120 rows and m columns (where m is the number of 

independent parameters of the discharge current into 

a plasma). The resulting 120m equations link the in-

stantaneous values of the dependent and independent 

parameters. The operator is not constructed as a ma-

trix, but is assumed constant over the entire column. 

As the digitization is synchronized, the instantane-

ous relationships between any dependent and inde-
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pendent pair of discharge parameters can be ob-

tained during the modulation period. 

2. A method of determining the presence of jumps 

and phase transitions of the dependent parameters (in-

cluding implicit transitions that are not noticeable in 

the experimental data) is proposed. This method repre-

sents the obtained links of the parameters as mathemat-

ical catastrophe equations, and reduces them to canon-

ical form, revealing the presence or absence of jumps 

and phase transitions in the considered area. 

3. A method that solves incorrectly posed inverse 

problems at singular points is developed. This meth-

od adopts the theory of catastrophes and a bifurca-

tion analysis method for cross-linked systems. 

4. The described procedures can be used to de-

termine jumps, phase transitions, and emergency 

situations in various fields of science and technol-

ogy. 
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