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Abstract

Controller design for unstable processes is relatively difficult when compared to stable processes. The complexity increases further for
multivariable unstable processes. In this work, simplified tuning rules are proposed to design PID controller for unstable multivariable processes.
Decouplers are applied to make the loops independent and diagonal elements of equivalent transfer function are used to design controllers. For this,
the decoupler design procedure proposed by Hazarika and Chidambaram [10] is used. Two theoretical examples of TITO unstable processes with
time delays are considered for simulation. Comparative analysis has been carried out with the recently reported methods in the literature and
observed that the proposed method provides improved closed loop performances. Robustness studies are also carried out with various perturbations
in the processes.
© 2016 Tomsk Polytechnic University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The closed loop responses for unstable systems usually
have more overshoot and settling times than those of stable
systems. Several methods are available for the controller design
of unstable SISO systems [1]. Recently, a review on unstable
systems is given by Rao and Chidambaram [2]. Whenever a
process transfer function has at least one right half plane pole,
it is called as an unstable process.When there are more than one
input and output, if the individual transfer functions have right
half plane poles, then the corresponding processes is called as
multivariable unstable process. Controller design methods for
MIMO unstable systems are limited and this research has taken
attention in the recent past. Interactions between the loops make
the design more difficult. Performances of MIMO systems can
be enhanced by the use of decouplers to counter act process
interactions. But these decouplers are sensitive to changes in
process and need highly accurate process models, which are
difficult to find. Decoupling can be done in three ways such as
ideal, inverted and simplified. For ideal decoupling inverse

of the process has to be found, which gives a complicated
decoupler elements. Inverted decoupling is sensitive to model-
ing errors. Simplified decoupling results in a simple form,
but controller cannot be applied directly to this decoupled
process without any model reduction method. Few methods are
reported to design controllers for unstable multivariable
systems. Examples of multivariable unstable process are
described in [3–5]. Georgiou et al. [3] proposed a decentralized
PID controller design for unstable multivariable systems using
optimization method. Agamennini et al. [6] proposed a design
using least squares method for time delay unstable systems
with multivariable delay compensator. Govindhakannan and
Chidambaram [7] applied the method of Tanttu and Lieslehto
[8] method to design single stage PI controllers for unstable
multivariable systems. Chandrasekhar and Chidambaram [9]
proposed a simple method of designing decentralized PID
controllers for unstable systems by synthesis method.
Rajapandiyan et al. [10] designed a controller for multi loop
stable processes based on ETF (equivalent transfer function)
approximation with simplified decouplers. Recently, Dasari
et al. [11] used ETF to design the controllers based on optimal
H2 IMC principles, simplified decouplers are also included and
observed enhanced performance for unstable systems. Hazarika
and Chidambaram [12] proposed a double loop control
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structure to decrease the overshoot such as proportional con-
troller followed by PI controller in the outer loop based on the
equivalent transfer function. They have showed that by a single
loop PI control with a set point filter, the overshoot is reduced
significantly and a good servo response is obtained. However,
this will not improve the regulatory responses. It may be desir-
able to use better settings particularly with a PID controller to
improve the performances of both the servo and regulatory
performances. All of these methods follow a complex proce-
dure to design the controller. In this work, simple tuning rules
are developed and applied for MIMO unstable first order time
delay systems.

2. Criteria of pairing

On selecting the appropriate input–output pairing, problem
of loop interaction can be reduced. Relative gain array (RGA)
and Niederlinski index (NI) are used to pair the manipulated
and controlled variables. For stable systems, the selection of
pairing corresponds to the positive values of NI and RGA,
where
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Criteria of pairing for unstable systems will differ when the
number of unstable open-loop poles of Gp(s) is different from
Ḡp(s) = diag[gp,ii(s)]. Then pairing should be made in the fol-
lowing ways: For a n × n square system (1) with one unstable
pole which exists in all elements of the process Gp(s), pairing
should be made such that NI is positive if n is odd and NI should
be negative if n is even; (2) with P number of unstable poles are
there in all elements of Gp(s), pairing should be such that NI is
positive if (n − 1)P is even and negative if (n − 1)P is odd.

3. Decoupler design

The methodology proposed by Hazarika and Chidambaram
[12] is used here. Many MIMO problems can be modified so
that decentralized control becomes a more viable (or attractive)
option. For example, one can sometimes use a pre-compensator
to turn the resultant system into a more nearly diagonal transfer
function. Consider the process Gp with input U and outputY as
shown in the block diagram
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where the simplified decouplers are given by
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4. Equivalent transfer function

Equivalent transfer function, diagonal elements are consid-
ered to design the controllers. If yr2 = 0 in the block diagram
then
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this can be further written as
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Similarly, if yr1 = 0
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Two assumptions are made to simplify the above equations
[13]: (1) perfect controller approximation for another
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(2) ETFs have the same structure of corresponding open-loop
model. By using the assumption of perfect controller
approximation, eqs. (5) and (6) can be reduced to
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Here, gp,11
eff and gp,22

eff are effective open-loop transfer func-
tions (EOTF). These are complicated transfer function models.
As EOTFs are complex they are approximated to FOPTD using
Maclaurin series for constructing the controllers. For higher
dimension systems EOTFs formulation is complex. Using
(RGA) relative gain array, (RNGA) relative normalized gain
array, and (RARTA) relative average residence time array con-
cepts, for higher dimension systems the expression for ETF
(equivalent transfer function) can be derived easily. The closed-
loop responses using ETF should match with the closed-loop
responses of gp,11

eff and gp,22
eff then both ETF and EOTF are said

to be the same. Construction of ETF is as follows: The KN,ij

normalized gain is defined as
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Here Θ represents Hadamard division, K denotes the steady
state gain, and Tar = τij + θij is average residence time which
indicates the response speed of yi controlled variable to uj

manipulated variable. The RNGA relative normalized gain
array is defined as
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where ⊗ represents Hadamard multiplication. RARTA
relative average residence time array, which is defined as
the ratio of loop yi − uj average residence times, when
other loops are closed and when other loops are open, is given
by
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Therefore, equivalent transfer function for an unstable
system can be expressed as
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noted that the method is applicable when EOTF = ETF.

5. Controller design

Diagonal elements of equivalent transfer function are con-
sidered to design the Controllers. Here, the diagonal element of
ETF is considered as a UFOPDT process
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IMC controller QC is given by Q Q FC C= � , where F is a filter
used to adjust the controller robustness
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where the subscript “+” refers to non-minimum phase and “–”
refers to minimum phase part. The Blaschke product of Gm and
v are defined as
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where pi is ith RHP pole and pi is its conjugate. H2 optimal
controller is designed based on the above concepts by using the
formula [14].
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therefore, IMC controller is given as
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Here, λ is tuning parameter. The value of α can be found
from the internal stability condition of IMC.

Condition 1: QC should be stable and cancel the right half
plane poles of Gm

Condition 2: QCGm must be stable
Condition 3: (1 − GmQC) at RHP poles of the process should

be zero

From the design procedure followed, the first two conditions
are justified and third condition is

1 01−( ) ==Q GC m s Pτ
(20)

Substituting QC, the value of α is
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Now, IMC controller is converted into a unity feedback
controller GC as
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Substituting Qc and Gm in above equation, we get
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This expression can be simplified into a PID controller using
Maclaurin series or Laurent series. Let us consider
J(s) = sGc(s). Now, expand J(s) by using Maclaurin series
expansion to get the controller Gc as
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General form of a PID controller is
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The PID controller parameters are obtained by comparing
the above two expressions
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Using controller parameters substitution and simplification,
we can obtain expressions for controller parameters as a func-
tion of λ τ θ τp pand which are very complex. Each expres-
sion for kc, τi, τd contains terms which are complex and are not
operator friendly. Simple tuning rules are always preferred for
all practical applications in industries. In this work, simple
expressions developed by the authors are used [15]. The simple
tuning rules are
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where a b c a b c a b c1 1 1 2 2 2 3 3 3, , , , , , , , are coefficients which change
for each ratio of time delay to time constant in the range of 0.1
to 1.2. The values of these coefficients are shown in Table 1.
Coefficients for intermediate ratios of time delay to time
constant, which are not given in the Table 1, can be obtained by
using simple interpolation techniques.

It is well known that the tuning parameters should be
selected in such a way that the resulting controllers give both
nominal as well as robust performance. In IMCmethod, a lesser
value for tuning parameters gives good nominal performance.
Higher value of these tuning parameters gives robust control
performance with compromise on nominal responses. Hence
there is a tradeoff in selecting the tuning parameter values.After
conducting many simulation studies on different processes, the
recommended range for the tuning parameter is selected as
λ θ θ= −0 5 2. . If the closed loop responses are not acceptable
within this range, other values can be selected.

6. Simulation results

Example 1: Consider a TITO process [12]
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To find out the pairing selection for this system RGA and NI
are calculated
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NI = 0.6969
As the number of open loop unstable poles is same for both

Gp(s) and Gp(s) = diag[gp,ii(s)], the criterion for pairing is to get
a positive value for NI. Since the calculated NI is positive,
pairing can be kept as it is. The simplified decouplers are
designed as previously described (Fig. 1)
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To find the controller parameters, equivalent transfer func-
tion can be evaluated using the following quantities such as
average residence time array, normalized gain array, relative
normalized gain array (RNGA) and relative average residence
time array (RARTA)
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Table 1
Coefficients for controller parameters with different θ τ p values.

θ τ p k k a
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cc p p= ( ) +1 1
1λ τ τ
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P
pa b c= ( ) +2 2

2
τ
τ

λ τD

P
pa
b

c= ( ) +3 3
3

a1 b1 c1 a2 b2 c2 a3 b3 c3

0.1 1.834 −0.6529 0.3804 2.733 2.682 7.256 −0.5576 0.2843 0.3743
0.2 1.99 −0.519 0.1901 2.733 2.682 7.348 −0.4616 0.3202 0.3656
0.3 2.005 −0.4427 0.09072 2.734 2.682 7.437 −0.3814 0.3564 0.3674
0.4 1.988 −0.3888 0.0235 2.734 2.682 7.526 −0.3175 0.3905 0.382
0.5 1.963 −0.3468 −0.02819 2.734 2.682 7.617 −0.2673 0.4213 0.4078
0.6 1.935 −0.3123 −0.07073 2.734 2.682 7.71 −0.2287 0.4469 0.4437
0.7 1.908 −0.2831 −0.1069 2.734 2.682 7.808 −0.1998 0.4657 0.4886
0.8 1.88 −0.2579 −0.1377 2.733 2.682 7.913 −0.1793 0.4761 0.5418
0.9 1.852 −0.2359 −0.1632 2.733 2.683 8.025 −0.1662 0.4765 0.6029
1 1.822 −0.2166 0.1828 2.731 2.683 8.148 −0.1593 0.4675 0.6715
1.1 1.788 −0.1999 −0.1951 2.729 2.683 8.283 −0.1575 0.4514 0.7469
1.2 1.748 −0.1854 −0.1983 2.727 2.684 8.433 −0.1586 0.4334 0.8275
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Using all of the above, equivalent transfer function can be
developed as
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Controller design with lead lag filter for Dasari et al. method
is given by

This designed controller is applied with set point weighting
of magnitude 0.3 to both the loops to the process. The control-
lers for all methods are given in Table 2. The closed loop
responses are plotted for a unit step change in the set point
and disturbance separately and are compared with other
methods such as Hazarika and Chidambaram [12] and Dasari
et al. [11]. Fig. 2 shows the closed loop servo responses and
interaction responses. Fig. 3 shows the corresponding regula-
tory responses. It can be observed that the proposed method
provides improved performances. To analyze the robustness,

perturbations of +10% in all time delays are given and the
corresponding responses are shown in Fig. 4. Perturbations in
other parameters are also considered and the corresponding
IAE values are given in Tables 3 and 4. It can be observed that
the proposed method is stable. The corresponding IAE values
for all the three methods are given in Table 5 and it can be
observed that the proposed method is better when compared to
the other methods.

Example 2: Consider another TITO process [12]
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Pairing is done based on RGA and NI
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Fig. 1. Decoupled control scheme.
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Controller design for proposed method is given by
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Table 2
Controller parameters for various methods.

Method Controller parameters

Loop1 Loop 2

kc,11 τ I,11 τD,11 kc,22 τ I,22 τD,22

Example 1 Proposed −1.8099 20.137 0.264 −1.541 18.035 0.292
Hazarika et al. (inner loop) −1.19 0 0 −1.007 0 0
Hazarika et al. (outer loop) 0.1902 7 0 0.155 7 0
Dasari et al. −0.0371 0.6255 0.2346 −0.0335 0.6255 0.2346

Example 2 Proposed −0.695 34.89 0.244 −0.791 34.89 0.244
Hazarika et al. (inner loop) −0.55 0 0 −0.66 0 0
Hazarika et al. (outer loop) 0.112 4 0 0.112 4 0
Dasari et al. −0.0139 0.6667 0.25 −0.0199 0.6667 0.25

Table 3
Comparison of IAE values of servo responses with perturbations in process parameters for example-1.

Perturbations Proposed method Hazarika method Dasari et al. method

Unit step
input in loop1

Unit step
input in loop2

Unit step
input in loop1

Unit step
input in loop2

Unit step
input in loop1

Unit step
input in loop2

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

kp 6.14 0.02 0.02 5.07 13.96 0 0 14.10 12.42 0 0 11.90
1.1kp 6.72 0.02 0.02 5.55 15.98 0 0 16.77 13.54 0 0 13.07
0.9kp 5.58 0.02 0.02 4.66 11.85 0 0 11.92 11.11 0 0 10.57
τ 6.14 0.02 0.02 5.07 13.96 0 0 14.10 12.42 0 0 11.90
1.1τ 6.23 0.17 0.14 5.2 14 0.36 0.22 14.24 12.42 0.25 0.19 11.9
0.9τ 6.06 0.27 0.23 5.04 13.9 1.15 0.79 14.15 12.42 0.25 0.19 11.9
θ 6.14 0.02 0.02 5.07 13.96 0 0 14.10 12.42 0 0 11.90
1.1θ 6.12 0.19 0.17 5.1 13.96 0.57 0.39 14.3 12.42 0.04 0.03 11.9
0.9θ 6.16 0.092 0.08 5.11 13.96 0.09 0.06 14.13 9.12 0.01 0 7.74

Fig. 2. Comparison of servo responses for a unit step input in y1 and y2, proposed method (solid), Hazarika method (dash) and Dasari et al. method (dash dot) for
example 1.
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RGA =
−

−
⎡
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⎤
⎦⎥

1 4283 0 4283
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. .

. .

NI for this system is 0.5833. As the number of open loop
unstable poles of Gp(s) is different from Gp(s) = diag[gp,ii(s)],
criterion of pairing is different. Since NI calculated is positive,
columns are interchanged. After interchanging
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Fig. 3. Comparison of regulatory responses for a unit step input in y1 and y2, proposedmethod (solid), Hazarikamethod (dash) andDasari et al (dash dot) for example 1.
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Fig. 4. Comparison of servo and regulatory responses with 10% perturbations to time delay for a unit step input in y1 and y2, proposed method (solid), Hazarika et al.
(dash) and Dasari et al. (dash dot) for example 1.
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Now the relative gain array is calculated as

RGA =
−
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Equivalent transfer function is calculated as
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Decouplers are designed as

D s( ) = −
−

⎡
⎣⎢

⎤
⎦⎥

1 1 6667
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.

.

Controller with lead lag filter designed by Dasari et al. [11]
is

This designed controller is applied with set point weighting
of magnitude 0.3 to both the loops of the process and the closed
loop responses are plotted. Fig. 5 shows the servo responses,
Fig. 6 shows the regulatory responses and Fig. 7 shows the
responses for perturbations. The corresponding IAE values for

different perturbations are given in Tables 6 and 7. It can be
observed that the proposed method is robust. The IAE values
for all three methods are given in Table 5 and it can be observed
that the proposed method is better compared to the other
methods.

Table 4
Comparison of IAE values of regulatory responses with perturbations for example-1.

Proposed method Hazarika method Dasari et al. method

Unit step
input in loop1

Unit step
input in loop2

Unit step
input in loop1

Unit step
input in loop2

Unit step
input in loop1

Unit step
input in loop2

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

kp 13.22 6.38 5.61 14.02 36.54 22.81 14.64 53.12 21.54 10.64 8.96 24.01
1.1kp 13.18 6.37 5.61 13.93 36.35 22.64 14.58 52.73 20.86 10.34 8.73 23.2
0.9kp 13.33 6.43 5.63 14.2 36.8 23.22 14.7 54.33 22.78 11.19 9.39 25.48
τ 13.22 6.38 5.61 14.02 36.54 22.81 14.64 53.12 21.54 10.64 8.96 24.01
1.1τ 13.24 6.36 5.6 14.05 36.56 22.79 14.61 53.17 21.72 10.53 8.86 24.23
0.9τ 13.21 6.41 5.62 14 36.52 22.83 14.73 53.22 21.34 10.74 9.05 23.77
θ 13.22 6.38 5.61 14.02 36.54 22.81 14.64 53.12 21.54 10.64 8.96 24.01
1.1θ 13.22 6.48 5.72 14.01 36.53 23.04 14.76 53.46 21.47 10.67 9.02 23.94
0.9θ 13.23 6.3 5.51 14.04 36.55 22.71 14.53 53.14 21.62 10.61 8.91 24.11
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Controller designed according to proposed method is
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Table 5
Comparison of IAE values for an input of unit step magnitude in set point and
disturbance in each loop.

Methods Servo Regulatory

Loop1 Loop 2 Loop1 Loop 2

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

Example1 Proposed
method

6.14 0.02 0.02 5.07 13.22 6.38 5.61 14.02

Hazarika 13.96 0 0 14.1 36.54 22.81 14.64 53.12
Dasari
et al.

12.42 0 0 11.9 21.54 10.64 8.96 24.01

Example2 Proposed 2.18 0.01 0 2.17 22.66 37.78 37.76 18.88
Hazarika
et al.

7.91 0.01 0 7.89 27.81 46.37 46.35 23.17

Dasari
et al

8.8 0.01 0 7.74 20.58 28.75 34.29 14.37
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7. Conclusions

In the present work, improved controller designs with simple
tuning rules for TITO unstable processes using the previously
developed decoupled control scheme are proposed. The perfor-
mance of the designed controllers is analyzed with different
theoretical examples. Performance of the designed controller is

much better than that of the previously existing methods. Even
though interactions are slightly more in some cases for the
proposed design, on a whole, the proposed designed controller
acts better than both Hazarika and Chidambaram [12] method
and Dasari et al [11] method. Proposed control system is
showing improved responses in the case of set point tracking
and disturbance rejection. The proposed method consists of

Fig. 5. Comparison of servo responses for a unit step input in y1 and y2, proposed method (solid), Hazarika (dash) and Dasari et al. (dash dot) for example 2.

Table 6
Comparison of IAE values of servo responses with various perturbations in parameters among proposed method, Hazarika method and Dasari et al. method for
example 2.

Perturbations Proposed method Hazarika method Dasari et al. method

Unit step
input in loop1

Unit step
input in loop2

Unit step
input in loop1

Unit step
input in loop2

Unit step
input in loop1

Unit step
input in loop2

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

kp 2.18 0 0 2.17 7.91 0 0 7.89 8.8 0.01 0 7.734
1.1kp 4 0.01 0 3.98 10.43 0.01 0 10.42 9.22 0.01 0 9.30
0.9kp 4.13 0.01 0 4.15 4.82 0.01 0 4.8 9.87 0.011 0 7.39
τ 2.18 0 0 2.17 7.91 0 0 7.89 8.8 0.01 0 7.734
1.1τ 1.91 0.01 0 1.91 7.91 0.01 0 7.89 9.31 0.01 0 7.74
0.9τ 2.66 0.01 0 2.65 7.91 0.01 0 7.89 8.35 0.01 0 7.74
θ 2.18 0 0 2.17 7.91 0 0 7.89 8.8 0.01 0 7.734
1.1θ 2.9 0.01 0 2.89 7.91 0.01 0 7.89 8.47 0.01 0 7.74
0.9θ 1.77 0.01 0 1.76 7.91 0.01 0 7.89 9.12 0.01 0 7.74
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Fig. 6. Comparison of regulatory responses for a unit step input in y1 and y2, proposed method (solid), Hazarika (dash) and Dasari et al. (dash dot) for example 2.
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Fig. 7. Comparison of servo and regulatory responses with 10% perturbations to time delay for a unit step input in y1 and y2, proposed method (solid), Hazarika et al.
(dash) and Dasari et al. (dash dot) for example 2.
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only one controller for each loop whereas in the previous
method such as Hazarika and Chidambaram [12], at least two
controllers were used in each loop. The ability to provide good
stable closed loop response even when there are large amount of
perturbations in the process parameters is a major advantage of
the proposed method over previously existing methods. Quan-
titative comparison is carried out using IAE values and the
proposed method is superior over Hazarika and Chidambaram
[12] method and Dasari et al. [11] method.
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