No. 2 (2015)

DOI https://doi.org/10.18799/24056529/2015/2/42

Enhanced antibacterial activity of streptomycin against some human pathogens using green synthesized silver nanoparticles

The development of eco-friendly technologies in nanoparticle synthesis is of utmost importance in order to expand their biological horizons. In the present study, bioreduction of AgNO3 into AgNPs using various leaf extracts of Ficus virens is explained. The resulting AgNPs were characterized by UV–vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Synthesis of AgNPs was confirmed by color change from transparent to brown with maximum absorption at 420 nm due to surface plasmon resonance of AgNPs. X-ray diffraction studies showed that the biosynthesized AgNPs were crystalline in nature, and TEM analysis showed spherical shape of the nanoparticles with size ranging from 4.98 to 29 nm. FTIR study indicates that mainly Ag atoms, and proteins are responsible for stabilizing the silver nanoparticles. The synthesized AgNPs showed significant antibacterial activity against Gram positive and gram negative human bacterial pathogens. The results showed that AgNPs also synergistically enhance (2.02–57.98%) the antibacterial activity of streptomycin, a common antibiotic. With this approach, AgNPs can be used as a new generation of antimicrobial agents for successful development of drug delivery.

Downloads

Download data is not yet available.

Authors:

Raj Salar

Naresh Kumar

Pooja Sharma

Download pdf