No. 4 (2016)

DOI https://doi.org/10.18799/24056529/2016/4/65

Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles

Vincristine is an anticancer drug used to treat different types of cancer. However, vincristine has been reported to become resistant against some cancer such as small cell lung cancer cell lines due to decreased uptake, increased drug efflux etc. To increase the uptake, vincristine loaded folic acid–chitosan conjugated nanoparticles were synthesized using ionic gelation method at pH 2.5. 1H-NMR confirmed conjugation of folic acid with chitosan. Blank folic acid–chitosan conjugated nanoparticles had an average size of 897.5 ± 0.90 nm, a polydispersity index of 0.738 ± 0.30 and zeta potential of +11.2 ± 0.43 mV and found to increase in vincristine loaded folic acid−chitosan nanoparticles at different formulations due to loading of vincristine in folic acid–chitosan conjugated nanoparticles. Fourier Transform Infrared Spectroscopy (FTIR) revealed different functional groups and loading of vincristine in chitosan nanoparticles. X-ray diffraction (XRD) was performed to confirm the crystalline nature of the drug after loading and face centered cubic (FCC) structure of nanoparticles. In vitro drug release study showed slow and sustained release of vincristine in phosphate buffered saline at pH 6.7. Scanning Electron Microscopy (SEM) revealed spherical and rough surface of nanoparticles. Transmission Electron Microscopy (TEM) confirmed loading of vincristine and size range of nanoparticles from 4.24 to 300 nm. Spectrophotometric analysis depicted maximum encapsulation efficiency and loading capacity of 81.25% and 10.31%, respectively. Since cancer cells express folate receptors on their surface, these vincristine loaded folic acid–chitosan conjugated nanoparticles could be used for targeted delivery against resistant cancer with some modifications.

Keywords:

Chitosan, Folic acid, Nanoparticles, Vincristine

Downloads

Download data is not yet available.

Authors:

Raj Salar

Naresh Kumar

Download pdf